Bounds on Betti Numbers of Tropical Prevarieties

Dima Grigoriev (Lille)
(jointly with N. Vorobjov)

CNRS
17/04/2018, Saint-Petersbourg

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes. If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\mathrm{min}, \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\varnothing:=-$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$.
Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\varnothing:=-$.
Examples • $\mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.
\square

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$.

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{j_{j 1}} \otimes \cdots \otimes x_{n}^{i_{j n}}\right)=\min _{j}\left\{Q_{j}\right\} ;$

Tropical semi-ring

Tropical semi-ring T is endowed with operations \oplus, \otimes.
If T is an ordered semi-group then T is a tropical semi-ring with inherited operations $\oplus:=\min , \otimes:=+$.
If T is an ordered (resp. abelian) group then T is a tropical semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash:=-$. Examples $\bullet \mathbb{Z}^{+}:=\{0 \leq a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^{+}:=\mathbb{Z}^{+} \cup\{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0 , in its turn 0 plays a role of 1 ;

- $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $\left(a_{i j}\right) \otimes\left(b_{k l}\right):=\left(\oplus_{1 \leq j \leq n} a_{i j} \otimes b_{j l}\right)$.

Tropical polynomials

Tropical monomial $x^{\otimes i}:=x \otimes \cdots \otimes x, Q=a \otimes x_{1}^{\otimes i_{1}} \otimes \cdots \otimes x_{n}^{\otimes i_{n}}$, its tropical degree trdeg $=i_{1}+\cdots+i_{n}$. Then $Q=a+i_{1} \cdot x_{1}+\cdots+i_{n} \cdot x_{n}$. Tropical polynomial $f=\bigoplus_{j}\left(a_{j} \otimes x_{1}^{j_{j 1}} \otimes \cdots \otimes x_{n}^{j_{j n}}\right)=\min _{j}\left\{Q_{j}\right\}$; $x=\left(x_{1}, \ldots, x_{n}\right)$ is a tropical zero of f if minimum $\min _{j}\left\{Q_{j}\right\}$ is attained for at least two different values of j.

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring
\square
algebraically closedifeld Fis algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations

series the leading exponents i_{j} / q_{j} in $X_{j}=a_{0 j} \cdot t^{i j} / q_{j}+\cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms)

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)
The field of Puiseux series
$F\left(\left(t^{1 / \infty}\right)\right) \ni a_{0} \cdot t^{\prime / q}+a_{1} \cdot t^{(i+1) / q}+\cdots, 0<q \in \mathbb{Z}$ over an algebraically closed field F is algebraically closed.

Historical sources of the tropical algebra

Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and multiplication:
$a, b \rightarrow t \cdot \log (\exp (a / t)+\exp (b / t)), \quad \lim _{t \rightarrow 0}=\max \{a, b\}$
$a, b \rightarrow t \cdot \log (\exp (a / t) \cdot \exp (b / t))=a+b$
Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)
The field of Puiseux series
$F\left(\left(t^{1 / \infty}\right)\right) \ni a_{0} \cdot t^{i / q}+a_{1} \cdot t^{(i+1) / q}+\cdots, 0<q \in \mathbb{Z}$ over an algebraically closed field F is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_{i}\left(X_{1}, \ldots, X_{n}\right)=0,1 \leq i \leq k$ with $f_{i} \in F\left(\left(t^{1 / \infty}\right)\right)\left[X_{1}, \ldots, X_{n}\right]$ in Puiseux series the leading exponents i_{j} / q_{j} in $X_{j}=a_{0 j} \cdot t^{i_{j} / q_{j}}+\cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j.
\square moment of execution of i by j, the latter restriction is expressed as Another sort of restrictions is that a machine

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).
> executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as

Another sort of restrictions is that a machine

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix $\left(w_{i j}\right)$.

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{i j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i, j} \geq x_{i j}+t_{i j}$.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_{1}, j} \geq x_{i j}+t_{i j}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

Minimal weights of paths in a graph (computer science)

For a graph with weights $w_{i j}$ on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix ($w_{i j}$).

Scheduling

Let several jobs i should be executed by means of several machines j with times of execution $t_{j j}$. The restrictions like that job i_{0} should be executed after job i are imposed. Denoting by unknown $x_{i j}$ a starting moment of execution of i by j, the latter restriction is expressed as $x_{i_{0}, j_{0}} \geq \min _{j}\left\{x_{i j}+t_{i j}\right\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_{1}, j} \geq x_{i j}+t_{i j}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.
This approach is employed in scheduling of Dutch and Korean railways.

Tropical Varieties and Prevarieties

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$,

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{i_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Tr} o p}(U(f)) \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
$V\left(f_{1}, \ldots, f_{k}\right):=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
$V\left(f_{1}, \ldots, f_{k}\right):=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety,

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Tr} o p(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
$V\left(f_{1}, \ldots, f_{k}\right):=\overline{\operatorname{Trop}\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
$V\left(f_{1}, \ldots, f_{k}\right):=\overline{\operatorname{Tr} o p\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral complex.

Tropical Varieties and Prevarieties

$K=\mathbb{C}\left(\left(t^{1 / \infty}\right)\right)=\left\{c=c_{0} t^{t_{0} / q}+c_{1} t^{\left(i_{0}+1\right) / q}+\cdots\right\}$
is a field of Puiseux series where $i_{0} \in \mathbb{Z}, 1 \leq q \in \mathbb{Z}$.
Consider an ideal $I \subset K\left[X_{1}, \ldots, X_{n}\right]$, the variety of its solutions $U(I) \subset K^{n}$.
Tropicalization $\operatorname{Trop}(c)=i_{0} / q, \operatorname{Trop}(0)=\infty$.
The closure in the Euclidean topology $V:=\overline{\operatorname{Trop}(U(I))} \subset \mathbb{R}^{n}$ is called the tropical variety of I.
$\overline{\operatorname{Trop}(U(f))} \subset \mathbb{R}^{n}$ is a tropical hypersurface where $f \in K\left[X_{1}, \ldots, X_{n}\right]$.
$V\left(f_{1}, \ldots, f_{k}\right):=\overline{\operatorname{Tr} o p\left(U\left(f_{1}\right)\right)} \cap \cdots \cap \overline{\operatorname{Trop}\left(U\left(f_{k}\right)\right)}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Any tropical prevariety is a polyhedral complex. Moreover, when ideal I is prime the tropical variety $\overline{\operatorname{Tr} o p(U(I))}$ has at any point the same local dimension equal dim/.

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_{l} \subset \mathbb{R}^{n}$ Newton polytope of $f_{i}, 1 \leq i \leq k$.

The number of faces of all dimensions of a tropical prevariety(Weak inequality of discrete Morse theory, R. Forman). I-th Betti number (the rank of I-th homology group) of V is less or equal to the number of I-dimensional faces of V.

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_{l} \subset \mathbb{R}^{n}$ Newton polytope of $f_{i}, 1 \leq i \leq k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V=V\left(f_{1}, \ldots, f_{k}\right)$ does not exceed $\left(2^{n+1}-1\right) \cdot n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$.

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_{l} \subset \mathbb{R}^{n}$ Newton polytope of $f_{i}, 1 \leq i \leq k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V=V\left(f_{1}, \ldots, f_{k}\right)$ does not exceed $\left(2^{n+1}-1\right) \cdot n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$.

Theorem

(Weak inequality of discrete Morse theory, R. Forman). I-th Betti number (the rank of I-th homology group) of V is less or equal to the number of I-dimensional faces of V.

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_{l} \subset \mathbb{R}^{n}$ Newton polytope of $f_{i}, 1 \leq i \leq k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V=V\left(f_{1}, \ldots, f_{k}\right)$ does not exceed $\left(2^{n+1}-1\right) \cdot n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$.

Theorem

(Weak inequality of discrete Morse theory, R. Forman). I-th Betti number (the rank of I-th homology group) of V is less or equal to the number of I-dimensional faces of V.

Corollary

The sum of Betti numbers of V does not exceed
$\left(2^{n+1}-1\right) \cdot n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$.

Tropical analog of Oleinik-Petrovsky-Milnor-Thom inequality

Corollary

For $\operatorname{trdeg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ the sum of Betti numbers of V is less than $\left(2^{n+1}-1\right) \cdot(k d)^{n}$.

Tropical analog of Oleinik-Petrovsky-Milnor-Thom inequality

Corollary

For $\operatorname{trdeg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ the sum of Betti numbers of V is less than $\left(2^{n+1}-1\right) \cdot(k d)^{n}$.

Compare with classical polynomials $h_{1}, \ldots, h_{k} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ defining a semi-algebraic set $W:=\left\{x \in \mathbb{R}^{n}: h_{i}(x) \geq 0,1 \leq i \leq k\right\}$.

Tropical analog of Oleinik-Petrovsky-Milnor-Thom inequality

Corollary

For $\operatorname{trdeg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ the sum of Betti numbers of V is less than $\left(2^{n+1}-1\right) \cdot(k d)^{n}$.

Compare with classical polynomials $h_{1}, \ldots, h_{k} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ defining a semi-algebraic set $W:=\left\{x \in \mathbb{R}^{n}: h_{i}(x) \geq 0,1 \leq i \leq k\right\}$.

Theorem

The sum of Betti numbers of W is bounded by $(k d)^{n}$.
Both classical bounds are close to sharp.

Tropical analog of Oleinik-Petrovsky-Milnor-Thom inequality

Corollary

For $\operatorname{trdeg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ the sum of Betti numbers of V is less than $\left(2^{n+1}-1\right) \cdot(k d)^{n}$.

Compare with classical polynomials $h_{1}, \ldots, h_{k} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ defining a semi-algebraic set $W:=\left\{x \in \mathbb{R}^{n}: h_{i}(x) \geq 0,1 \leq i \leq k\right\}$.

Theorem

The sum of Betti numbers of W is bounded by $(k d)^{n}$.

Theorem

(S. Basu) I-th $(I \geq 1)$ Betti number of W does not exceed $\binom{k+n}{n} \cdot d^{n}$.

Tropical analog of Oleinik-Petrovsky-Milnor-Thom inequality

Corollary

For $\operatorname{trdeg}\left(f_{i}\right) \leq d, 1 \leq i \leq k$ the sum of Betti numbers of V is less than $\left(2^{n+1}-1\right) \cdot(k d)^{n}$.

Compare with classical polynomials $h_{1}, \ldots, h_{k} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ defining a semi-algebraic set $W:=\left\{x \in \mathbb{R}^{n}: h_{i}(x) \geq 0,1 \leq i \leq k\right\}$.

Theorem

The sum of Betti numbers of W is bounded by $(k d)^{n}$.

Theorem

(S. Basu) I-th $(I \geq 1)$ Betti number of W does not exceed $\binom{k+\eta}{n} \cdot d^{n}$.

Both classical bounds are close to sharp.

Bound on the number of connected components of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less than

$$
\binom{k+7 n}{3 n} \cdot d^{3 n} .
$$

This bound is close to sharp
Question. Does a similar bound hold for Betti numbers?

Bound on the number of connected components of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less than

$$
\binom{k+7 n}{3 n} \cdot d^{3 n}
$$

This bound is close to sharp.
Question. Does a similar bound hold for Betti numbers?

Bound on the number of connected components of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less than

$$
\binom{k+7 n}{3 n} \cdot d^{3 n}
$$

This bound is close to sharp.
Question. Does a similar bound hold for Betti numbers?

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.
For a face F of Q without vertical rays its dual $G(F)$ is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q=F$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.
For a face F of Q without vertical rays its dual $G(F)$ is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q=F$. Then $G(F)$ is identified with a face of the dual polyhedron to Q, and $\operatorname{dim} F+\operatorname{dim} G(F)=n$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.
For a face F of Q without vertical rays its dual $G(F)$ is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q=F$. Then $G(F)$ is identified with a face of the dual polyhedron to Q, and $\operatorname{dim} F+\operatorname{dim} G(F)=n$. Observe that F is representable as a Minkowski sum $F=F_{1}+\cdots+F_{k}$ where F_{i} is a face of (the bottom) of Q_{i} such that any $H \in G(F)$ is a supporting hyperplane for Q_{i} and $H \cap Q_{i}=F_{i}$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.
For a face F of Q without vertical rays its dual $G(F)$ is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q=F$. Then $G(F)$ is identified with a face of the dual polyhedron to Q, and $\operatorname{dim} F+\operatorname{dim} G(F)=n$. Observe that F is representable as a Minkowski sum $F=F_{1}+\cdots+F_{k}$ where F_{i} is a face of (the bottom) of Q_{i} such that any $H \in G(F)$ is a supporting hyperplane for Q_{i} and $H \cap Q_{i}=F_{i}$. We say that a face F (without vertical rays) is tropical if $\operatorname{dim} F_{i} \geq 1,1 \leq i \leq k$.

Proof of the bound on the number of faces of a tropical prevariety: dual polyhedron

Denote $f_{i}:=\bigoplus_{J} a_{J, i} \otimes X^{\otimes J}, a_{J, i} \in \mathbb{R}, J=\left(j_{1}, \ldots, j_{n}\right), 1 \leq i \leq k$. Extended Newton polytope $Q_{i} \subset \mathbb{R}^{n+1}$ of f_{i} is the convex hull of points $\left(J, a_{J, i}\right)$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_{1}+\cdots+Q_{k}$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ along the last coordinate. Then
$\pi(Q)=\pi\left(Q_{1}+\cdots+Q_{k}\right)=P_{1}+\cdots+P_{k}$.
For a face F of Q without vertical rays its dual $G(F)$ is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q=F$. Then $G(F)$ is identified with a face of the dual polyhedron to Q, and $\operatorname{dim} F+\operatorname{dim} G(F)=n$. Observe that F is representable as a Minkowski sum $F=F_{1}+\cdots+F_{k}$ where F_{i} is a face of (the bottom) of Q_{i} such that any $H \in G(F)$ is a supporting hyperplane for Q_{i} and $H \cap Q_{i}=F_{i}$. We say that a face F (without vertical rays) is tropical if $\operatorname{dim} F_{i} \geq 1,1 \leq i \leq k$. Then $V\left(f_{1}, \ldots, f_{k}\right)$ coincides with the union of polyhedra $G(F)$ for all tropical faces F.

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices.

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays,

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V\left(f_{1}, \ldots, f_{k}\right)$.

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V\left(f_{1}, \ldots, f_{k}\right)$.
Since for each n-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^{n}$ has integer vertices, we get $\operatorname{Vol}_{n}(\pi(S)) \geq 1 / n!$.

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V\left(f_{1}, \ldots, f_{k}\right)$.
Since for each n-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^{n}$ has integer vertices, we get $\operatorname{Vol}_{n}(\pi(S)) \geq 1 / n!$. Therefore, the number of all n-dimensional simplices in the decomposition does not exceed $n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$.

Proof of the bound on the number of faces of a tropical prevariety: triangulation and volume estimating

Decompose each n-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V\left(f_{1}, \ldots, f_{k}\right)$.
Since for each n-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^{n}$ has integer vertices, we get $\operatorname{Vol}_{n}(\pi(S)) \geq 1 / n!$. Therefore, the number of all n-dimensional simplices in the decomposition does not exceed $n!\cdot \operatorname{Vol}_{n}\left(P_{1}+\cdots+P_{k}\right)$. To complete the proof it remains to notice that the number of all subsimplices of an n-dimensional simplex equals $2^{n+1}-1$.

Explicit representation of a tropical prevariety as a polyhedral complex

Explicit representation of a tropical prevariety as a polyhedral complex
 Assume that each tropical polynomial
 $f_{i}=\min \left\{L_{i, 1}, \ldots, L_{i, m}\right\}, 1 \leq i \leq k$ is m-sparse, so has at most m monomials, where $L_{i, j}$ are linear polynomials.

Explicit representation of a tropical prevariety as a polyhedral complex

Assume that each tropical polynomial
$f_{i}=\min \left\{L_{i, 1}, \ldots, L_{i, m}\right\}, 1 \leq i \leq k$ is m-sparse, so has at most m monomials, where $L_{i, j}$ are linear polynomials. For any subset
$B \subset D:=\{(i, j): 1 \leq i \leq k, 1 \leq j \leq m\}$ consider the polyhedron U_{B} consisting of points $x \in \mathbb{R}^{n}$ such that for each $1 \leq i \leq k$

$$
\begin{aligned}
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}=L_{i, j_{0}}(x),\left(i, j_{0}\right) \in B \\
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}<L_{i, j_{1}}(x),\left(i, j_{1}\right) \notin B .
\end{aligned}
$$

Explicit representation of a tropical prevariety as a polyhedral complex

Assume that each tropical polynomial
$f_{i}=\min \left\{L_{i, 1}, \ldots, L_{i, m}\right\}, 1 \leq i \leq k$ is m-sparse, so has at most m monomials, where $L_{i, j}$ are linear polynomials. For any subset $B \subset D:=\{(i, j): 1 \leq i \leq k, 1 \leq j \leq m\}$ consider the polyhedron U_{B} consisting of points $x \in \mathbb{R}^{n}$ such that for each $1 \leq i \leq k$

$$
\begin{aligned}
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}=L_{i, j_{0}}(x),\left(i, j_{0}\right) \in B \\
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}<L_{i, j_{1}}(x),\left(i, j_{1}\right) \notin B .
\end{aligned}
$$

Tropical prevariety $V\left(f_{1}, \ldots, f_{k}\right)$ is the union of all U_{B} such that for each $1 \leq i \leq k$ there exist $1 \leq j_{2}<j_{3} \leq m$ with $\left(i, j_{2}\right),\left(i, j_{3}\right) \in B$.

Explicit representation of a tropical prevariety as a polyhedral complex

Assume that each tropical polynomial
$f_{i}=\min \left\{L_{i, 1}, \ldots, L_{i, m}\right\}, 1 \leq i \leq k$ is m-sparse, so has at most m monomials, where $L_{i, j}$ are linear polynomials. For any subset $B \subset D:=\{(i, j): 1 \leq i \leq k, 1 \leq j \leq m\}$ consider the polyhedron U_{B} consisting of points $x \in \mathbb{R}^{n}$ such that for each $1 \leq i \leq k$

$$
\begin{aligned}
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}=L_{i, j_{0}}(x),\left(i, j_{0}\right) \in B, \\
& \min _{1 \leq j \leq m}\left\{L_{i, j}(x)\right\}<L_{i, j_{1}}(x),\left(i, j_{1}\right) \notin B .
\end{aligned}
$$

Tropical prevariety $V\left(f_{1}, \ldots, f_{k}\right)$ is the union of all U_{B} such that for each $1 \leq i \leq k$ there exist $1 \leq j_{2}<j_{3} \leq m$ with $\left(i, j_{2}\right),\left(i, j_{3}\right) \in B$.

Moreover, U_{B} constitute a polyhedral complex: the faces of every U_{B} are also some $U_{B_{l}}$, and each intersection of the closures $\overline{U_{B_{l}}} \cap \overline{U_{B_{s}}}$ equals $\overline{U_{B_{q}}}$ for suitable q.

Betti numbers for sparse tropical polynomials

Betti numbers for sparse tropical polynomials

Consider arrangement A of at most $k \cdot\binom{m}{2}$ hyperplanes of the form $L_{i, j_{1}}=L_{i, j_{2}}, 1 \leq i \leq k, 1 \leq j_{1}<j_{2} \leq m$.

For any $B \sim D$ polyhedron s a foco of A thoroforo hytho Woar
k Morse Inequality we get

Betti numbers for sparse tropical polynomials

Consider arrangement A of at most $k \cdot\binom{m}{2}$ hyperplanes of the form $L_{i, j_{1}}=L_{i, j_{2}}, 1 \leq i \leq k, 1 \leq j_{1}<j_{2} \leq m$. For any $B \subset D$ polyhedron U_{B} is a face of A.

Theorem
The sum of Betti numbers of a tropical prevariety $V\left(f_{1}, \ldots, f_{h}\right.$
by m-sparse tropical polynomials f_{1}, \ldots, f_{k} does not exceed

Betti numbers for sparse tropical polynomials

Consider arrangement A of at most $k \cdot\binom{m}{2}$ hyperplanes of the form $L_{i, j_{1}}=L_{i, j_{2}}, 1 \leq i \leq k, 1 \leq j_{1}<j_{2} \leq m$. For any $B \subset D$ polyhedron U_{B} is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V\left(f_{1}, \ldots, f_{k}\right)$ defined by m-sparse tropical polynomials f_{1}, \ldots, f_{k} does not exceed

$$
n \cdot 2^{n} \cdot\binom{k \cdot\binom{m}{2}}{n}
$$

Betti numbers for sparse tropical polynomials

Consider arrangement A of at most $k \cdot\binom{m}{2}$ hyperplanes of the form $L_{i, j_{1}}=L_{i, j_{2}}, 1 \leq i \leq k, 1 \leq j_{1}<j_{2} \leq m$. For any $B \subset D$ polyhedron U_{B} is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V\left(f_{1}, \ldots, f_{k}\right)$ defined by m-sparse tropical polynomials f_{1}, \ldots, f_{k} does not exceed

$$
n \cdot 2^{n} \cdot\binom{k \cdot\binom{m}{2}}{n}
$$

owing to the bound on the number of faces of an arrangement due to T. Zaslavski.

