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Tropical semi-ring
Tropical semi-ring T is endowed with operations ⊕, ⊗.
If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations ⊕ := min, ⊗ := +.
If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. � := −.
Examples • Z+ := {0 ≤ a ∈ Z}, Z+

∞ := Z+ ∪ {∞} are commutative
tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;
• Z, Z∞ are semi-fields;
• n × n matrices over Z∞ form a non-commutative tropical semi-ring:
(aij)⊗ (bkl) := (⊕1≤j≤naij ⊗ bjl).

Tropical polynomials

Tropical monomial x⊗i := x ⊗ · · · ⊗ x , Q = a⊗ x⊗i1
1 ⊗ · · · ⊗ x⊗in

n , its
tropical degree trdeg = i1 + · · ·+ in. Then Q = a + i1 · x1 + · · ·+ in · xn.
Tropical polynomial f =

⊕
j(aj ⊗ x ij1

1 ⊗ · · · ⊗ x ijn
n ) = minj{Qj};

x = (x1, . . . , xn) is a tropical zero of f if minimum minj{Qj} is attained
for at least two different values of j .
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Historical sources of the tropical algebra
Logarithmic scaling of the reals (mathematical physics)
Define two operations on positive reals, replacing addition and
multiplication:
a,b → t · log(exp(a/t) + exp(b/t)), limt→0 = max{a,b}
a,b → t · log(exp(a/t) · exp(b/t)) = a + b
Thus, the ”dequantization” of the logarithmic scaling is a tropical
semi-ring

Solving systems of polynomial equations in Puiseux series
(algebraic geometry)
The field of Puiseux series
F ((t1/∞)) 3 a0 · t i/q + a1 · t(i+1)/q + · · · , 0 < q ∈ Z over an
algebraically closed field F is algebraically closed. In the (Newton)
algorithm for solving a system of polynomial equations
fi(X1, . . . ,Xn) = 0, 1 ≤ i ≤ k with fi ∈ F ((t1/∞))[X1, . . . ,Xn] in Puiseux
series the leading exponents ij/qj in Xj = a0j · t ij/qj + · · · satisfy a
tropical polynomial system (due to cancelation of the leading terms).
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Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Minimal weights of paths in a graph (computer science)
For a graph with weights wij on edges (i , j) for any k to compute for
each pair of vertices i , j the minimal weight of paths between i and j .
This is equivalent to computing the tropical k -th power of matrix (wij).

Scheduling
Let several jobs i should be executed by means of several machines j
with times of execution tij . The restrictions like that job i0 should be
executed after job i are imposed. Denoting by unknown xij a starting
moment of execution of i by j , the latter restriction is expressed as
xi0,j0 ≥ minj{xij + tij}. Another sort of restrictions is that a machine
can’t execute two jobs simultaneously, i. e. xi1,j ≥ xij + tij . It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.
This approach is employed in scheduling of Dutch and Korean
railways.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 4 / 11



Tropical Varieties and Prevarieties
K = C((t1/∞)) = {c = c0t i0/q + c1t(i0+1)/q + · · · }

is a field of Puiseux series where i0 ∈ Z, 1 ≤ q ∈ Z.

Consider an ideal I ⊂ K [X1, . . . ,Xn], the variety of its solutions
U(I) ⊂ K n.

Tropicalization Trop(c) = i0/q, Trop(0) =∞.

The closure in the Euclidean topology V := Trop(U(I)) ⊂ Rn is called
the tropical variety of I.

Trop(U(f )) ⊂ Rn is a tropical hypersurface where f ∈ K [X1, . . . ,Xn].

V (f1, . . . , fk ) := Trop(U(f1))∩ · · · ∩ Trop(U(fk )) is a tropical prevariety.
Any tropical variety is a tropical prevariety, but not necessary vice
versa.

Any tropical prevariety is a polyhedral complex. Moreover, when ideal I
is prime the tropical variety Trop(U(I)) has at any point the same local
dimension equal dimI.
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Bounds on Betti numbers via the volume of
Minkowski sum of Newton polytopes
Denote by PI ⊂ Rn Newton polytope of fi , 1 ≤ i ≤ k .

Theorem
The number of faces of all dimensions of a tropical prevariety
V = V (f1, . . . , fk ) does not exceed
(2n+1 − 1) · n! · Voln(P1 + · · ·+ Pk ).

Theorem
(Weak inequality of discrete Morse theory, R. Forman). l-th Betti
number (the rank of l-th homology group) of V is less or equal to the
number of l-dimensional faces of V .

Corollary
The sum of Betti numbers of V does not exceed
(2n+1 − 1) · n! · Voln(P1 + · · ·+ Pk ).
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality

Corollary
For trdeg(fi) ≤ d , 1 ≤ i ≤ k the sum of Betti numbers of V is less than
(2n+1 − 1) · (kd)n.

Compare with classical polynomials h1, . . . ,hk ∈ R[X1, . . . ,Xn] defining
a semi-algebraic set W := {x ∈ Rn : hi(x) ≥ 0, 1 ≤ i ≤ k}.

Theorem
The sum of Betti numbers of W is bounded by (kd)n.

Theorem

(S. Basu) l-th (l ≥ 1) Betti number of W does not exceed
(k+n

n

)
· dn.

Both classical bounds are close to sharp.
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Bound on the number of connected components
of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less
than (

k + 7n
3n

)
· d3n.

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?
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Proof of the bound on the number of faces of a
tropical prevariety: dual polyhedron
Denote fi :=

⊕
J aJ,i ⊗ X⊗J , aJ,i ∈ R, J = (j1, . . . , jn), 1 ≤ i ≤ k .

Extended Newton polytope Qi ⊂ Rn+1 of fi is the convex hull of points
(J,aJ,i). Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Q1 + · · ·+ Qk together with all the rays
emanating upwards from the bottom. Denote the projection
π : Rn+1 → Rn along the last coordinate. Then
π(Q) = π(Q1 + · · ·+ Qk ) = P1 + · · ·+ Pk .
For a face F of Q without vertical rays its dual G(F ) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
H ∩Q = F . Then G(F ) is identified with a face of the dual polyhedron
to Q, and dimF + dimG(F ) = n. Observe that F is representable as a
Minkowski sum F = F1 + · · ·+ Fk where Fi is a face of (the bottom) of
Qi such that any H ∈ G(F ) is a supporting hyperplane for Qi and
H ∩Qi = Fi . We say that a face F (without vertical rays) is tropical if
dimFi ≥ 1, 1 ≤ i ≤ k . Then V (f1, . . . , fk ) coincides with the union of
polyhedra G(F ) for all tropical faces F .
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emanating upwards from the bottom. Denote the projection
π : Rn+1 → Rn along the last coordinate. Then
π(Q) = π(Q1 + · · ·+ Qk ) = P1 + · · ·+ Pk .
For a face F of Q without vertical rays its dual G(F ) is defined as the
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to Q, and dimF + dimG(F ) = n. Observe that F is representable as a
Minkowski sum F = F1 + · · ·+ Fk where Fi is a face of (the bottom) of
Qi such that any H ∈ G(F ) is a supporting hyperplane for Qi and
H ∩Qi = Fi . We say that a face F (without vertical rays) is tropical if
dimFi ≥ 1, 1 ≤ i ≤ k . Then V (f1, . . . , fk ) coincides with the union of
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays, which in its turn, is not less
than the total number of faces in V (f1, . . . , fk ).
Since for each n-dimensional simplex S in the decomposition its
projection π(S) ⊂ Rn has integer vertices, we get Voln(π(S)) ≥ 1/n!.
Therefore, the number of all n-dimensional simplices in the
decomposition does not exceed n! · Voln(P1 + · · ·+ Pk ). To complete
the proof it remains to notice that the number of all subsimplices of an
n-dimensional simplex equals 2n+1 − 1.
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Explicit representation of a tropical prevariety as a
polyhedral complex
Assume that each tropical polynomial
fi = min{Li,1, . . . ,Li,m}, 1 ≤ i ≤ k is m-sparse, so has at most m
monomials, where Li,j are linear polynomials. For any subset
B ⊂ D := {(i , j) : 1 ≤ i ≤ k , 1 ≤ j ≤ m} consider the polyhedron UB
consisting of points x ∈ Rn such that for each 1 ≤ i ≤ k

min
1≤j≤m

{Li,j(x)} = Li,j0(x), (i , j0) ∈ B,

min
1≤j≤m

{Li,j(x)} < Li,j1(x), (i , j1) 6∈ B.

Tropical prevariety V (f1, . . . , fk ) is the union of all UB such that for each
1 ≤ i ≤ k there exist 1 ≤ j2 < j3 ≤ m with (i , j2), (i , j3) ∈ B.

Moreover, UB constitute a polyhedral complex: the faces of every UB
are also some UBl , and each intersection of the closures UBl ∩ UBs

equals UBq for suitable q.
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Betti numbers for sparse tropical polynomials

Consider arrangement A of at most k ·
(m

2

)
hyperplanes of the form

Li,j1 = Li,j2 , 1 ≤ i ≤ k , 1 ≤ j1 < j2 ≤ m. For any B ⊂ D polyhedron UB
is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem
The sum of Betti numbers of a tropical prevariety V (f1, . . . , fk ) defined
by m-sparse tropical polynomials f1, . . . , fk does not exceed

n · 2n ·
(

k ·
(m

2

)
n

)
owing to the bound on the number of faces of an arrangement due to
T. Zaslavski.
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