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Tropical semi-ring

Tropical semi-ring T is endowed with operations @, ®.

If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations & := min, ® := +.

If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. © = —.

Examples ¢ Z1 := {0 < a€ Z}, Z} = Z" U {oo} are commutative
tropical semi-rings. oo plays a role of 0, in its turn 0 plays a role of 1;
e 7., 7, are semi-fields;

e N x n matrices over Z., form a non-commutative tropical semi-ring:

(@j) @ (bu) = (B1<j<n@j @ by).

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18

2/11




Tropical semi-ring

Tropical semi-ring T is endowed with operations @, ®.

If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations & := min, ® := +.

If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. © = —.

Examples ¢ Z1 := {0 < a€ Z}, Z} = Z" U {oo} are commutative
tropical semi-rings. oo plays a role of 0, in its turn 0 plays a role of 1;
e 7., 7, are semi-fields;

e N x n matrices over Z., form a non-commutative tropical semi-ring:
(aj) ® (bw) == (B1<j<nalj ® bj).

Tropical polynomials

Tropical monomial x®' = x® ---@x, Q=a® x?“ ® - @ X2 its
tropical degree trdeg = iy + -+ +ip. Then Q=a+ iy - Xy + -+ + In - Xp.

Dima Grigoriev (CNRS) 17.04.18 2/11




Tropical semi-ring

Tropical semi-ring T is endowed with operations @, ®.

If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations & := min, ® := +.

If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. © = —.

Examples ¢ Z1 := {0 < a€ Z}, Z} = Z" U {oo} are commutative
tropical semi-rings. oo plays a role of 0, in its turn 0 plays a role of 1;
e 7., 7, are semi-fields;

e N x n matrices over Z., form a non-commutative tropical semi-ring:
(aj) ® (bw) == (B1<j<nalj ® bj).

Tropical polynomials

Tropical monomial x®' = x® ---@x, Q=a® x?“ ® - @ X2 its
tropical degree trdeg = iy + - +ip. Then Q= a+ iy - Xy + -+ + ip - Xp.
Tropical polynomial f = @;(aj @ X{' @ -+ @ x{) = min{ Q}};

Dima Grigoriev (CNRS) 17.04.18 2/11




Tropical semi-ring

Tropical semi-ring T is endowed with operations @, ®.

If T is an ordered semi-group then T is a tropical semi-ring with
inherited operations & := min, ® := +.

If T is an ordered (resp. abelian) group then T is a tropical
semi-skew-field (resp. tropical semi-field) w.r.t. © = —.

Examples ¢ Z1 := {0 < a€ Z}, Z} = Z" U {oo} are commutative
tropical semi-rings. oo plays a role of 0, in its turn 0 plays a role of 1;
e 7., 7, are semi-fields;

e N x n matrices over Z., form a non-commutative tropical semi-ring:
(aj) ® (bw) == (B1<j<nalj ® bj).

Tropical polynomials

Tropical monomial x®' .= x @ --- @ x, Q=a@ x{" @ --- @ x§™, its
tropical degree trdeg = iy + -+ +ip. Then Q=a+ iy - xy + -+ In - Xn.
Tropical polynomial f = @;(aj @ X{' @ -+ @ x{) = min{ Q}};

X = (X1,...,Xn) is a tropical zero of f if minimum min;{Q;} is attained
for at least two different values of j.
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Historical sources of the tropical algebra
Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and
multiplication:

a,b—t-log(exp(a/t) + exp(b/t)), lim;_o = max{a, b}
a,b—t-log(exp(a/t) -exp(b/t)) =a+b
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Thus, the "dequantization” of the logarithmic scaling is a tropical
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Solving systems of polynomial equations in Puiseux series
(algebraic geometry)

The field of Puiseux series

F((t'/>)) > ay- /94 ay - ti+1)/9 ... 0 < g € Z over an
algebraically closed field F is algebraically closed.
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Historical sources of the tropical algebra
Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and
multiplication:

a,b—t-log(exp(a/t) + exp(b/t)), lim;_o = max{a, b}
a,b—t-log(exp(a/t) -exp(b/t)) =a+ b

Thus, the "dequantization” of the logarithmic scaling is a tropical
semi-ring

Solving systems of polynomial equations in Puiseux series
(algebraic geometry)

The field of Puiseux series

F((t'/>)) > ay- /94 ay - ti+1)/9 ... 0 < g € Z over an
algebraically closed field F is algebraically closed. In the (Newton)
algorithm for solving a system of polynomial equations

fi(X1,...,Xp) =0,1<i<kwith f; € F((t"/>))[X,..., X] in Puiseux
series the leading exponents j;/q; in X; = ag; - ti/% + - - - satisfy a

tropical polynomial system (due to cancelation of the leading terms).
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Minimal weights of paths in a graph (computer science)

For a graph with weights w;; on edges (i, j) for any k to compute for
each pair of vertices i, j the minimal weight of paths between i and j.
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with times of execution t;.
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Xio.Jo > minj{x,-j + l',j}

Dima Grigoriev (CNRS) 17.04.18 4/11



Minimal weights of paths in a graph (computer science)

For a graph with weights w;; on edges (/, j) for any k to compute for
each pair of vertices i, j the minimal weight of paths between i and j.
This is equivalent to computing the tropical k-th power of matrix (w;).

Scheduling

Let several jobs i should be executed by means of several machines j
with times of execution t;. The restrictions like that job iy should be
executed after job / are imposed. Denoting by unknown Xx;; a starting
moment of execution of i by j, the latter restriction is expressed as
Xiyjo = Min;{x; + t;}. Another sort of restrictions is that a machine
can't execute two jobs simultaneously, i. e. X, ; > x;i + t;.

Dima Grigoriev (CNRS) 17.04.18 4/11



Minimal weights of paths in a graph (computer science)

For a graph with weights w;; on edges (/, j) for any k to compute for
each pair of vertices i, j the minimal weight of paths between i and j.
This is equivalent to computing the tropical k-th power of matrix (w;).

Scheduling

Let several jobs i should be executed by means of several machines j
with times of execution t;. The restrictions like that job iy should be
executed after job / are imposed. Denoting by unknown Xx;; a starting
moment of execution of i by j, the latter restriction is expressed as
Xiyjo = Min;{x; + t;}. Another sort of restrictions is that a machine
can't execute two jobs simultaneously, i. e. x;, ; > x; + t;. It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.

Dima Grigoriev (CNRS) 17.04.18 4/11



Minimal weights of paths in a graph (computer science)

For a graph with weights w;; on edges (/, j) for any k to compute for
each pair of vertices i, j the minimal weight of paths between i and j.
This is equivalent to computing the tropical k-th power of matrix (w;).

Scheduling

Let several jobs i should be executed by means of several machines j
with times of execution t;. The restrictions like that job iy should be
executed after job / are imposed. Denoting by unknown Xx;; a starting
moment of execution of i by j, the latter restriction is expressed as
Xiyjo = Min;{x; + t;}. Another sort of restrictions is that a machine
can't execute two jobs simultaneously, i. e. x;, ; > x; + t;. It leads to a
system of min-plus linear inequalities, the problem being equivalent to
tropical linear systems.

This approach is employed in scheduling of Dutch and Korean
railways.
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Tropical Varieties and Prevarieties
K = C((tV/°°)) = {c = cot0/q + ¢y tlot1)/a 4 ...}
is a field of Puiseux series where ip € Z, 1 < q € Z.
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Tropical Varieties and Prevarieties

K = C((t'/*°)) = {c = cot®/9 + ¢ tlo+1)/q 4 ...}

is a field of Puiseux series where ip € Z, 1 < q € Z.
Consider anideal I C K[X1,..., Xx],
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V(fi,... f) = Trop(U(fy)) N ---n Trop(U(fx)) is a tropical prevariety.
Any tropical variety is a tropical prevariety, but not necessary vice
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Any tropical prevariety is a polyhedral complex.
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Tropical Varieties and Prevarieties
K = C((t"/>)) = {c = ¢t/ + ¢y tlot/a ...}
is a field of Puiseux series where ip € Z, 1 < q € Z.

Consider an ideal | C K[Xj,..., Xp], the variety of its solutions

u(l) c K.

Tropicalization Trop(c) = iy/q, Trop(0) = oo.

The closure in the Euclidean topology V := Trop(U(/)) C R" is called
the tropical variety of /.

Trop(U(f)) C R" is a tropical hypersurface where f € K[Xj,..., Xj].

V(fi,... f) = Trop(U(fy)) N ---n Trop(U(fx)) is a tropical prevariety.
Any tropical variety is a tropical prevariety, but not necessary vice
versa.

Any tropical prevariety is a polyhedral complex. Moreover, when ideal /
is prime the tropical variety Trop(U(/)) has at any point the same local
dimension equal dim/.
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Bounds on Betti numbers via the volume of

Minkowski sum of Newton polytopes
Denote by P; ¢ R"” Newton polytope of f;, 1 < i < k.
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Bounds on Betti numbers via the volume of
Minkowski sum of Newton polytopes

Denote by P; ¢ R"” Newton polytope of f;, 1 < i < k.
Theorem

The number of faces of all dimensions of a tropical prevariety
V= V(f,...,f) does not exceed
(21 —1).nl- Volp(Py + - - + Py).
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Bounds on Betti numbers via the volume of

Minkowski sum of Newton polytopes
Denote by P; ¢ R"” Newton polytope of f;, 1 < i < k.

Theorem
The number of faces of all dimensions of a tropical prevariety
V= V(f,...,f) does not exceed

(21 —1) . nl- Voly(Py + - - - + Py).

Theorem

(Weak inequality of discrete Morse theory, R. Forman). /-th Betti
number (the rank of I-th homology group) of V is less or equal to the
number of |-dimensional faces of V.
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Bounds on Betti numbers via the volume of

Minkowski sum of Newton polytopes
Denote by P; ¢ R"” Newton polytope of f;, 1 < i < k.

Theorem
The number of faces of all dimensions of a tropical prevariety
V= V(f,...,f) does not exceed

(21 —1) . nl- Voly(Py + - - - + Py).

Theorem

(Weak inequality of discrete Morse theory, R. Forman). /-th Betti
number (the rank of I-th homology group) of V is less or equal to the
number of |-dimensional faces of V.

Corollary

The sum of Betti numbers of V does not exceed
(2n+1 — 1) -n!- VO/n(P1 + .-+ Pk)

v
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality

Corollary

Fortrdeg(f;) < d, 1 < i < k the sum of Betti numbers of V is less than
(21 —1) . (kd)".
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality

Corollary

Fortrdeg(f;) < d, 1 < i < k the sum of Betti numbers of V is less than
(21 —1) . (kd)".

Compare with classical polynomials hy, ..., hx € R[Xq,..., X;] defining
a semi-algebraic set W := {x ¢ R" : hj(x) >0, 1 <i < k}.
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality
Corollary

Fortrdeg(f;) < d, 1 < i < k the sum of Betti numbers of V is less than
(21 —1) . (kd)".

Compare with classical polynomials hy, ..., hx € R[Xq,..., X;] defining
a semi-algebraic set W := {x ¢ R": hj(x) >0, 1 <i < k}.

Theorem
The sum of Betti numbers of W is bounded by (kd)".

Theorem

(S. Basu) /-th (I > 1) Betti number of W does not exceed (“1") - d".

v
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Tropical analog of Oleinik-Petrovsky-Milnor-Thom
inequality

Corollary

Fortrdeg(f;) < d, 1 < i < k the sum of Betti numbers of V is less than
(21 —1) . (kd)".

Compare with classical polynomials hy, ..., hx € R[Xq,..., X;] defining
a semi-algebraic set W := {x ¢ R": hj(x) >0, 1 <i < k}.

Theorem
The sum of Betti numbers of W is bounded by (kd)".

Theorem
(S. Basu) /-th (I > 1) Betti number of W does not exceed (“1") - d".

v

Both classical bounds are close to sharp.
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Bound on the number of connected components
of a tropical prevariety

Theorem

(A. Davydow - G.) The number of connected components of V is less

than
k+7n an
( . ).d |
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Bound on the number of connected components
of a tropical prevariety

Theorem
(A. Davydow - G.) The number of connected components of V is less

than
k+7n an
( . ).d |

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?
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Proof of the bound on the number of faces of a
tropical prevariety: dual polyhedron
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron
Denote f; := @, a,; ® X®/, a;; € R, J = (j1,...,jn), 1 < i< k.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; := @, a,; ® X®/, a;; € R, J = (j1,...,jn), 1 < i< k.
Extended Newton polytope Q; ¢ R™*1 of f; is the convex hull of points
(J,au,i)-
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; := @, a,; ® X®/, a;; € R, J = (j1,...,jn), 1 < i< k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Q; + - - - + Q together with all the rays
emanating upwards from the bottom.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; := @, a,; ® X®/, a;; € R, J = (j1,...,jn), 1 < i< k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Qq + - - - + Qi together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=7(Q1+ -+ Q)=P1+--+ Px.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; == @, a,; ® X%, a;; € R, J = (j1,..-,jn), 1 <i < k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Qq + - - - + Qi together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=7(Q1+ -+ Q)=P1+--+ Px.

For a face F of Q without vertical rays its dual G(F) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
HNnQ=F.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; == @, a,; ® X%, a;; € R, J = (j1,..-,jn), 1 <i < k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Q; + - - - + Q together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=7(Q1+ -+ Q)=P1+--+ Px.

For a face F of Q without vertical rays its dual G(F) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
HN Q= F. Then G(F) is identified with a face of the dual polyhedron
to Q, and dimF + dimG(F) = n.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; == @, a,; ® X%, a;; € R, J = (j1,..-,jn), 1 <i < k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Qq + - - - + Qi together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=m(Qy +--+ Q) =Py +--- + P

For a face F of Q without vertical rays its dual G(F) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
HN Q= F. Then G(F) is identified with a face of the dual polyhedron
to Q, and dimF + dimG(F) = n. Observe that F is representable as a
Minkowski sum F = F; + --- + F4 where F; is a face of (the bottom) of
Q; such that any H € G(F) is a supporting hyperplane for Q; and
HnNnQ = F.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; == @, a,; ® X%, a;; € R, J = (j1,..-,jn), 1 <i < k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Qq + - - - + Qi together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=m(Qy +--+ Q) =Py +--- + P

For a face F of Q without vertical rays its dual G(F) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
HN Q= F. Then G(F) is identified with a face of the dual polyhedron
to Q, and dimF + dimG(F) = n. Observe that F is representable as a
Minkowski sum F = F; + --- + F4 where F; is a face of (the bottom) of
Q; such that any H € G(F) is a supporting hyperplane for Q; and

HnN Q; = F;. We say that a face F (without vertical rays) is tropical if
dimF; > 1,1 <i<k.
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Proof of the bound on the number of faces of a

tropical prevariety: dual polyhedron

Denote f; == @, a,; ® X%, a;; € R, J = (j1,..-,jn), 1 <i < k.
Extended Newton polytope Q; c R™ of f; is the convex hull of points
(J,ay)- Denote by Q the bottom (i. e. the lowest with respect to the
last coordinate points) of Qq + - - - + Qi together with all the rays
emanating upwards from the bottom. Denote the projection

7 : RM1 — R along the last coordinate. Then

T(Q)=m(Qy +--+ Q) =Py +--- + P

For a face F of Q without vertical rays its dual G(F) is defined as the
set of all supporting hyperplanes H without vertical lines to Q such that
HN Q= F. Then G(F) is identified with a face of the dual polyhedron
to Q, and dimF + dimG(F) = n. Observe that F is representable as a
Minkowski sum F = F; + --- + F4 where F; is a face of (the bottom) of
Q; such that any H € G(F) is a supporting hyperplane for Q; and

HnN Q; = F;. We say that a face F (without vertical rays) is tropical if
dimF; > 1,1 < i< k. Then V(fi,..., fx) coincides with the union of
polyhedra G(F) for all tropical faces F.
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices.
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays,
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays, which in its turn, is not less
than the total number of faces in V(fi,..., f).
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays, which in its turn, is not less
than the total number of faces in V(fi,..., f).

Since for each n-dimensional simplex S in the decomposition its
projection 7(S) C R" has integer vertices, we get Vol,(7(S)) > 1/n!.
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays, which in its turn, is not less
than the total number of faces in V(fi,..., f).

Since for each n-dimensional simplex S in the decomposition its
projection 7(S) C R" has integer vertices, we get Vol,(7(S)) > 1/n!.
Therefore, the number of all n-dimensional simplices in the
decomposition does not exceed n! - Vol,(Py + - - - + P).
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Proof of the bound on the number of faces of a
tropical prevariety: triangulation and volume
estimating

Decompose each n-dimensional face of Q without vertical rays into
n-dimensional closed simplices without adding new vertices. The
number of all subsimplices of these simplices is not less than the total
number of faces in Q without vertical rays, which in its turn, is not less
than the total number of faces in V(fi,..., f).

Since for each n-dimensional simplex S in the decomposition its
projection 7(S) C R" has integer vertices, we get Vol,(7(S)) > 1/n!.
Therefore, the number of all n-dimensional simplices in the
decomposition does not exceed n! - Vol,(Py + - - - + Px). To complete
the proof it remains to notice that the number of all subsimplices of an
n-dimensional simplex equals 27! — 1.
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Explicit representation of a tropical prevariety as a
polyhedral complex

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 11/11



Explicit representation of a tropical prevariety as a
polyhedral complex
Assume that each tropical polynomial

fi=min{L;jq,...,Lim}, 1 < i< kis m-sparse, so has at most m
monomials, where L;; are linear polynomials.
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Explicit representation of a tropical prevariety as a
polyhedral complex
Assume that each tropical polynomial
fi=min{L;4,...,Lim}, 1 < i< kis m-sparse, so has at most m
monomials, where L;; are linear polynomials. For any subset
Bc D:={(i,j) : 1 <i<k,1<j< m} consider the polyhedron Ug
consisting of points x € R” such that foreach 1 < i < k

min {LI,](X)} = Lf,jo(x)7 (I7.IO) € Ba

1<j<m

min {L;;(x)} < Lij,(x), (i,j1) & B.

1<j<m
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Explicit representation of a tropical prevariety as a
polyhedral complex
Assume that each tropical polynomial
fi=min{L;4,...,Lim}, 1 < i< kis m-sparse, so has at most m
monomials, where L;; are linear polynomials. For any subset
Bc D:={(i,j) : 1 <i<k,1<j< m} consider the polyhedron Ug
consisting of points x € R” such that foreach 1 < i < k

min {LI,](X)} = Lf,jo(x)7 (I7.IO) € Ba

1<j<m

min {L;;(x)} < Lij,(x), (i,j1) & B.

1<j<m

Tropical prevariety V(fi,...,fx) is the union of all Ug such that for each
1 <i<kthereexist1 <jo < jzs < mwith (i, ), (i,j3) € B.

Dima Grigoriev (CNRS) Betti numbers of tropical prevariety 17.04.18 11/11



Explicit representation of a tropical prevariety as a

polyhedral complex

Assume that each tropical polynomial

fi=min{L;4,...,Lim}, 1 < i< kis m-sparse, so has at most m
monomials, where L;; are linear polynomials. For any subset

Bc D:={(i,j) : 1 <i<k,1<j< m} consider the polyhedron Ug
consisting of points x € R” such that foreach 1 < i < k

min {L;;(x)} = Lij,(x), (i./o) € B,

1<j<m
1r£nji§nm{L,-,j(x)} < Ljj(x), (i,j1) & B.
Tropical prevariety V(fi,...,fx) is the union of all Ug such that for each

1 <i<kthereexist1 <jo < jzs < mwith (i, ), (i,j3) € B.
Moreover, Ug constitute a polyhedral complex: the faces of every Ug

are also some Ug,, and each intersection of the closures Ug, N Up,
equals Ug, for suitable q.
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Betti numbers for sparse tropical polynomials
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Betti numbers for sparse tropical polynomials

Consider arrangement A of at most k - (7)) hyperplanes of the form
Lij =Lip, 1<i<k1<ji<jp<m
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Betti numbers for sparse tropical polynomials

Consider arrangement A of at most k - (%) hyperplanes of the form

Lij =L, 1<i<k, 1<j; <jo<m. Forany B C D polyhedron Ug
is a face of A.
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Betti numbers for sparse tropical polynomials

Consider arrangement A of at most k - (77) hyperplanes of the form
Lij =L, 1<i<k, 1<j; <jo<m. Forany B C D polyhedron Ug
is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem
The sum of Betti numbers of a tropical prevariety V(fi, ..., fx) defined
by m-sparse tropical polynomials fi, . .., fy does not exceed

e ()
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Betti numbers for sparse tropical polynomials

Consider arrangement A of at most k - (77) hyperplanes of the form
Lij =Lip, 1<i<k,1<j1 <jo<m. Forany B C D polyhedron Ug
is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem
The sum of Betti numbers of a tropical prevariety V(fi, ..., fx) defined
by m-sparse tropical polynomials fi, . .., fy does not exceed

e ()

owing to the bound on the number of faces of an arrangement due to
T. Zaslavski.
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