Bounds on Betti Numbers of Tropical Prevarieties

Dima Grigoriev (Lille) (jointly with N. Vorobjov)

CNRS

17/04/2018, Saint-Petersbourg

(4) E. (4)

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min$, $\otimes := +$. If *T* is an ordered (resp. abelian) group then *T* is a *tropical semi-skew-field* (resp. *tropical semi-field*) w.r.t. $\otimes := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields; • $n \ge n$ matrices over \mathbb{Z} form a non-commutative tropical semi-ring.

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. *tropical semi-field*) w.r.t. $\oslash := -$. **Examples** • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1 • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_1} \otimes \cdots \otimes x_n^{i_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

- If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.
- **Examples** $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;
- $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum min_j $\{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes . If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}^+_{\infty} := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1;

• $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{j_1} \otimes \cdots \otimes x_n^{j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_j_1} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_j_1} \otimes \cdots \otimes x_n^{i_j_n}) = \min_j \{Q_j\}$; $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$.

 $x = (x_1, ..., x_n)$ is a **tropical zero** of *f* if minimum min_{*j*}{ Q_j } is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Tropical semi-ring T is endowed with operations \oplus , \otimes .

If *T* is an ordered semi-group then *T* is a tropical semi-ring with inherited operations $\oplus := \min, \otimes := +$.

If *T* is an ordered (resp. abelian) group then *T* is a *tropical* semi-skew-field (resp. tropical semi-field) w.r.t. $\oslash := -$.

Examples • $\mathbb{Z}^+ := \{0 \le a \in \mathbb{Z}\}, \mathbb{Z}_{\infty}^+ := \mathbb{Z}^+ \cup \{\infty\}$ are commutative tropical semi-rings. ∞ plays a role of 0, in its turn 0 plays a role of 1; • $\mathbb{Z}, \mathbb{Z}_{\infty}$ are semi-fields;

• $n \times n$ matrices over \mathbb{Z}_{∞} form a non-commutative tropical semi-ring: $(a_{ij}) \otimes (b_{kl}) := (\bigoplus_{1 \le j \le n} a_{ij} \otimes b_{jl}).$

Tropical polynomials

Tropical monomial $x^{\otimes i} := x \otimes \cdots \otimes x$, $Q = a \otimes x_1^{\otimes i_1} \otimes \cdots \otimes x_n^{\otimes i_n}$, its tropical degree trdeg $= i_1 + \cdots + i_n$. Then $Q = a + i_1 \cdot x_1 + \cdots + i_n \cdot x_n$. Tropical polynomial $f = \bigoplus_j (a_j \otimes x_1^{i_{j_1}} \otimes \cdots \otimes x_n^{i_{j_n}}) = \min_j \{Q_j\};$ $x = (x_1, \dots, x_n)$ is a **tropical zero** of *f* if minimum $\min_j \{Q_j\}$ is attained for at least two different values of *j*.

Dima Grigoriev (CNRS)

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_j/q_j in $X_j = a_{0j} \cdot t^{i_j/q_j} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "deguantization" of the logarithmic scaling is a tropical semi-ring

 $f_i(X_1,...,X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1,...,X_n]$ in Puiseux series the leading exponents i_i/q_i in $X_i = a_{0i} \cdot t^{i_j/q_j} + \cdots$ satisfy a **Dima Grigoriev (CNRS)** 17.04.18 3/11

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_i/q_i in $X_i = a_{0i} \cdot t^{i/q_i} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Logarithmic scaling of the reals (mathematical physics)

Define two operations on positive reals, replacing addition and multiplication:

 $a, b \rightarrow t \cdot \log(\exp(a/t) + \exp(b/t)), \quad \lim_{t \rightarrow 0} = \max\{a, b\}$

 $a, b \rightarrow t \cdot \log(\exp(a/t) \cdot \exp(b/t)) = a + b$

Thus, the "dequantization" of the logarithmic scaling is a tropical semi-ring

Solving systems of polynomial equations in Puiseux series (algebraic geometry)

The field of Puiseux series $F((t^{1/\infty})) \ni a_0 \cdot t^{i/q} + a_1 \cdot t^{(i+1)/q} + \cdots, 0 < q \in \mathbb{Z}$ over an algebraically closed field *F* is algebraically closed. In the (Newton) algorithm for solving a system of polynomial equations $f_i(X_1, \ldots, X_n) = 0, 1 \le i \le k$ with $f_i \in F((t^{1/\infty}))[X_1, \ldots, X_n]$ in Puiseux series the leading exponents i_j/q_j in $X_j = a_{0j} \cdot t^{i_j/q_j} + \cdots$ satisfy a tropical polynomial system (due to cancelation of the leading terms).

Dima Grigoriev (CNRS)

17.04.18 3 / 11

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_i)

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

< ロ > < 同 > < 回 > < 回 >

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job *i*₀ should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_i \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_i a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_i \{x_{i_1} + t_{i_1}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{i_1} + t_{i_1}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

For a graph with weights w_{ij} on edges (i, j) for any k to compute for each pair of vertices i, j the minimal weight of paths between i and j. This is equivalent to computing the tropical k-th power of matrix (w_{ij}) .

Scheduling

Let several jobs *i* should be executed by means of several machines *j* with times of execution t_{ij} . The restrictions like that job i_0 should be executed after job *i* are imposed. Denoting by unknown x_{ij} a starting moment of execution of *i* by *j*, the latter restriction is expressed as $x_{i_0,j_0} \ge \min_j \{x_{ij} + t_{ij}\}$. Another sort of restrictions is that a machine can't execute two jobs simultaneously, i. e. $x_{i_1,j} \ge x_{ij} + t_{ij}$. It leads to a system of min-plus linear inequalities, the problem being equivalent to tropical linear systems.

This approach is employed in scheduling of Dutch and Korean railways.

 $K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \le q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \dots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots\}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a **tropical hypersurface** where $f \in K[X_1, ..., X_n]$. $V(f_1, ..., f_k) := \overline{Trop}(U(f_1)) \cap \cdots \cap \overline{Trop}(U(f_k))$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{\text{Trop}(U(f))} \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a tropical prevariety. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots \}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

$$K = \mathbb{C}((t^{1/\infty})) = \{c = c_0 t^{i_0/q} + c_1 t^{(i_0+1)/q} + \cdots\}$$

is a field of Puiseux series where $i_0 \in \mathbb{Z}$, $1 \leq q \in \mathbb{Z}$.

Consider an ideal $I \subset K[X_1, ..., X_n]$, the variety of its solutions $U(I) \subset K^n$.

Tropicalization $Trop(c) = i_0/q$, $Trop(0) = \infty$.

The closure in the Euclidean topology $V := \overline{Trop(U(I))} \subset \mathbb{R}^n$ is called the **tropical variety** of *I*.

 $\overline{Trop}(U(f)) \subset \mathbb{R}^n$ is a tropical hypersurface where $f \in K[X_1, \ldots, X_n]$.

 $V(f_1, \ldots, f_k) := \overline{Trop(U(f_1))} \cap \cdots \cap \overline{Trop(U(f_k))}$ is a **tropical prevariety**. Any tropical variety is a tropical prevariety, but not necessary vice versa.

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_I \subset \mathbb{R}^n$ Newton polytope of f_i , $1 \le i \le k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V = V(f_1, ..., f_k)$ does not exceed $(2^{n+1} - 1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Theorem

(Weak inequality of discrete Morse theory, R. Forman). *I-th Betti* number (the rank of *I-th homology group*) of *V* is less or equal to the number of *I-dimensional faces of V*.

Corollary

The sum of Betti numbers of V does not exceed $(2^{n+1}-1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_I \subset \mathbb{R}^n$ Newton polytope of f_i , $1 \le i \le k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V = V(f_1, ..., f_k)$ does not exceed $(2^{n+1} - 1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Theorem

(Weak inequality of discrete Morse theory, R. Forman). *I-th Betti* number (the rank of *I-th homology group*) of *V* is less or equal to the number of *I-dimensional faces of V*.

Corollary

The sum of Betti numbers of V does not exceed $(2^{n+1}-1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_I \subset \mathbb{R}^n$ Newton polytope of f_i , $1 \le i \le k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V = V(f_1, ..., f_k)$ does not exceed $(2^{n+1} - 1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Theorem

(Weak inequality of discrete Morse theory, R. Forman). *I-th Betti* number (the rank of *I-th homology group*) of *V* is less or equal to the number of *I-dimensional faces of V*.

Corollary

The sum of Betti numbers of V does not exceed $(2^{n+1}-1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Bounds on Betti numbers via the volume of Minkowski sum of Newton polytopes

Denote by $P_I \subset \mathbb{R}^n$ Newton polytope of f_i , $1 \le i \le k$.

Theorem

The number of faces of all dimensions of a tropical prevariety $V = V(f_1, ..., f_k)$ does not exceed $(2^{n+1} - 1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Theorem

(Weak inequality of discrete Morse theory, R. Forman). *I-th Betti* number (the rank of *I-th homology group*) of *V* is less or equal to the number of *I-dimensional faces of V*.

Corollary

The sum of Betti numbers of V does not exceed $(2^{n+1}-1) \cdot n! \cdot Vol_n(P_1 + \cdots + P_k).$

Corollary

For trdeg $(f_i) \le d$, $1 \le i \le k$ the sum of Betti numbers of V is less than $(2^{n+1}-1) \cdot (kd)^n$.

Compare with classical polynomials $h_1, \ldots, h_k \in \mathbb{R}[X_1, \ldots, X_n]$ defining a semi-algebraic set $W := \{x \in \mathbb{R}^n : h_i(x) \ge 0, 1 \le i \le k\}.$

Theorem

The sum of Betti numbers of W is bounded by $(kd)^n$.

Theorem

(S. Basu) I-th (I \geq 1) Betti number of W does not exceed $\binom{k+n}{n} \cdot d^n$

Both classical bounds are close to sharp.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Corollary

For trdeg $(f_i) \le d$, $1 \le i \le k$ the sum of Betti numbers of V is less than $(2^{n+1}-1) \cdot (kd)^n$.

Compare with classical polynomials $h_1, \ldots, h_k \in \mathbb{R}[X_1, \ldots, X_n]$ defining a semi-algebraic set $W := \{x \in \mathbb{R}^n : h_i(x) \ge 0, 1 \le i \le k\}$.

Theorem

The sum of Betti numbers of W is bounded by $(kd)^n$.

Theorem

(S. Basu) *I-th* ($l \ge 1$) Betti number of W does not exceed $\binom{k+n}{n} \cdot d^n$

Both classical bounds are close to sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

For trdeg $(f_i) \le d$, $1 \le i \le k$ the sum of Betti numbers of V is less than $(2^{n+1}-1) \cdot (kd)^n$.

Compare with classical polynomials $h_1, \ldots, h_k \in \mathbb{R}[X_1, \ldots, X_n]$ defining a semi-algebraic set $W := \{x \in \mathbb{R}^n : h_i(x) \ge 0, 1 \le i \le k\}$.

Theorem

The sum of Betti numbers of W is bounded by $(kd)^n$.

Theorem

(**S. Basu**) *I-th* ($l \ge 1$) *Betti number of* W does not exceed $\binom{k+n}{n} \cdot d^n$.

Both classical bounds are close to sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Corollary

For trdeg $(f_i) \le d$, $1 \le i \le k$ the sum of Betti numbers of V is less than $(2^{n+1}-1) \cdot (kd)^n$.

Compare with classical polynomials $h_1, \ldots, h_k \in \mathbb{R}[X_1, \ldots, X_n]$ defining a semi-algebraic set $W := \{x \in \mathbb{R}^n : h_i(x) \ge 0, 1 \le i \le k\}$.

Theorem

The sum of Betti numbers of W is bounded by $(kd)^n$.

Theorem

(S. Basu) *I-th* $(l \ge 1)$ *Betti number of W does not exceed* $\binom{k+n}{n} \cdot d^n$.

Both classical bounds are close to sharp.

・ロト ・ 同ト ・ ヨト ・ ヨト

Corollary

For trdeg $(f_i) \le d$, $1 \le i \le k$ the sum of Betti numbers of V is less than $(2^{n+1}-1) \cdot (kd)^n$.

Compare with classical polynomials $h_1, \ldots, h_k \in \mathbb{R}[X_1, \ldots, X_n]$ defining a semi-algebraic set $W := \{x \in \mathbb{R}^n : h_i(x) \ge 0, 1 \le i \le k\}$.

Theorem

The sum of Betti numbers of W is bounded by $(kd)^n$.

Theorem

(S. Basu) *I-th* $(l \ge 1)$ *Betti number of W does not exceed* $\binom{k+n}{n} \cdot d^n$.

Both classical bounds are close to sharp.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Bound on the number of connected components of a tropical prevariety

Theorem

(A. Davydow - G.) The number of connected components of V is less than

$$\binom{k+7n}{3n} \cdot d^{3n}.$$

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?

Bound on the number of connected components of a tropical prevariety

Theorem

(A. Davydow - G.) The number of connected components of V is less than

$$\binom{k+7n}{3n} \cdot d^{3n}.$$

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?

Bound on the number of connected components of a tropical prevariety

Theorem

(A. Davydow - G.) The number of connected components of V is less than

$$\binom{k+7n}{3n} \cdot d^{3n}.$$

This bound is close to sharp.

Question. Does a similar bound hold for Betti numbers?

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \ldots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then

$$\pi(Q) = \pi(Q_1 + \dots + Q_k) = P_1 + \dots + P_k.$$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1, 1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \dots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \dots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then

$$\pi(Q) = \pi(Q_1 + \dots + Q_k) = P_1 + \dots + P_k.$$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1, 1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Denote $f_i := \bigoplus_{i \in J} a_{I,i} \otimes X^{\otimes J}, a_{I,i} \in \mathbb{R}, J = (j_1, \dots, j_n), 1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \ldots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection

 $\pi: \mathbb{R}^{n+1}
ightarrow \mathbb{R}^n$ along the last coordinate. Then

 $\pi(Q) = \pi(Q_1 + \cdots + Q_k) = P_1 + \cdots + P_k.$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1$, $1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \dots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \dots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then $\pi(Q) = \pi(Q_1 + \dots + Q_k) = P_1 + \dots + P_k$.

For a face *F* of *Q* without vertical rays its dual *G*(*F*) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then *G*(*F*) is identified with a face of the dual polyhedron to *Q*, and dim *F* + dim *G*(*F*) = *n*. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) or Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1$, $1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra *G*(*F*) for all tropical faces *F*.

Denote $f_i := \bigoplus_{i \in J} a_{I,i} \otimes X^{\otimes J}, a_{I,i} \in \mathbb{R}, J = (j_1, \dots, j_n), 1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{I,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then $\pi(Q) = \pi(Q_1 + \cdots + Q_k) = P_1 + \cdots + P_k.$ For a face F of Q without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron

Denote $f_i := \bigoplus_{i \in J} a_{I,i} \otimes X^{\otimes J}, a_{I,i} \in \mathbb{R}, J = (j_1, \dots, j_n), 1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{I,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi: \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then $\pi(Q) = \pi(Q_1 + \cdots + Q_k) = P_1 + \cdots + P_k.$ For a face F of Q without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes H without vertical lines to Q such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to Q, and dimF + dimG(F) = n. Observe that F is representable as a

Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face F (without vertical rays) is *tropical* if dim $F_i \ge 1, 1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces F.

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \dots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \dots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then

$$\pi(Q) = \pi(Q_1 + \cdots + Q_k) = P_1 + \cdots + P_k.$$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1, 1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \ldots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then

$$\pi(Q) = \pi(Q_1 + \cdots + Q_k) = P_1 + \cdots + P_k.$$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1, 1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Denote $f_i := \bigoplus_J a_{J,i} \otimes X^{\otimes J}$, $a_{J,i} \in \mathbb{R}$, $J = (j_1, \ldots, j_n)$, $1 \le i \le k$. Extended Newton polytope $Q_i \subset \mathbb{R}^{n+1}$ of f_i is the convex hull of points $(J, a_{J,i})$. Denote by Q the bottom (i. e. the lowest with respect to the last coordinate points) of $Q_1 + \cdots + Q_k$ together with all the rays emanating upwards from the bottom. Denote the projection $\pi : \mathbb{R}^{n+1} \to \mathbb{R}^n$ along the last coordinate. Then

$$\pi(Q)=\pi(Q_1+\cdots+Q_k)=P_1+\cdots+P_k.$$

For a face *F* of *Q* without vertical rays its dual G(F) is defined as the set of all supporting hyperplanes *H* without vertical lines to *Q* such that $H \cap Q = F$. Then G(F) is identified with a face of the dual polyhedron to *Q*, and dim $F + \dim G(F) = n$. Observe that *F* is representable as a Minkowski sum $F = F_1 + \cdots + F_k$ where F_i is a face of (the bottom) of Q_i such that any $H \in G(F)$ is a supporting hyperplane for Q_i and $H \cap Q_i = F_i$. We say that a face *F* (without vertical rays) is *tropical* if dim $F_i \ge 1$, $1 \le i \le k$. Then $V(f_1, \ldots, f_k)$ coincides with the union of polyhedra G(F) for all tropical faces *F*.

Decompose each *n*-dimensional face of *Q* without vertical rays into *n*-dimensional closed simplices without adding new vertices. The

Decompose each *n*-dimensional face of *Q* without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Decompose each *n*-dimensional face of *Q* without vertical rays into *n*-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in *Q* without vertical rays, which in its turn, is not less than the total number of faces in $V(f_1, \ldots, f_k)$.

Since for each *n*-dimensional simplex *S* in the decomposition its projection $\pi(S) \subset \mathbb{R}^n$ has integer vertices, we get $Vol_n(\pi(S)) \ge 1/n!$. Therefore, the number of all *n*-dimensional simplices in the decomposition does not exceed $n! \cdot Vol_n(P_1 + \cdots + P_k)$. To complete the proof it remains to notice that the number of all subsimplices of an *n*-dimensional simplex equals $2^{n+1} - 1$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Decompose each *n*-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V(f_1, \ldots, f_k)$. Since for each *n*-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^n$ has integer vertices, we get $Vol_n(\pi(S)) \geq 1/n!$.

(日)

Decompose each *n*-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V(f_1, \ldots, f_k)$. Since for each *n*-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^n$ has integer vertices, we get $Vol_n(\pi(S)) \geq 1/n!$. Therefore, the number of all *n*-dimensional simplices in the decomposition does not exceed $n! \cdot Vol_n(P_1 + \cdots + P_k)$. To complete

Decompose each *n*-dimensional face of Q without vertical rays into n-dimensional closed simplices without adding new vertices. The number of all subsimplices of these simplices is not less than the total number of faces in Q without vertical rays, which in its turn, is not less than the total number of faces in $V(f_1, \ldots, f_k)$. Since for each *n*-dimensional simplex S in the decomposition its projection $\pi(S) \subset \mathbb{R}^n$ has integer vertices, we get $Vol_n(\pi(S)) \geq 1/n!$. Therefore, the number of all *n*-dimensional simplices in the decomposition does not exceed $n! \cdot Vol_n(P_1 + \cdots + P_k)$. To complete the proof it remains to notice that the number of all subsimplices of an *n*-dimensional simplex equals $2^{n+1} - 1$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assume that each tropical polynomial

 $f_i = \min\{L_{i,1}, \ldots, L_{i,m}\}, 1 \le i \le k$ is *m*-sparse, so has at most *m* monomials, where $L_{i,j}$ are linear polynomials. For any subset $B \subset D := \{(i,j) : 1 \le i \le k, 1 \le j \le m\}$ consider the polyhedron U_B consisting of points $x \in \mathbb{R}^n$ such that for each $1 \le i \le k$

$$\min_{1 \le j \le m} \{L_{i,j}(x)\} = L_{i,j_0}(x), \ (i,j_0) \in B,$$

$$\min_{1 \le j \le m} \{L_{i,j}(x)\} < L_{i,j_1}(x), (i,j_1) \notin B.$$

Tropical prevariety $V(f_1, \ldots, f_k)$ is the union of all U_B such that for each $1 \le i \le k$ there exist $1 \le j_2 < j_3 \le m$ with $(i, j_2), (i, j_3) \in B$.

Moreover, U_B constitute a polyhedral complex: the faces of every U_B are also some U_{B_i} , and each intersection of the closures $\overline{U_{B_i}} \cap \overline{U_{B_s}}$ equals $\overline{U_{B_a}}$ for suitable q.

Assume that each tropical polynomial

 $f_i = \min\{L_{i,1}, \dots, L_{i,m}\}, 1 \le i \le k$ is *m*-sparse, so has at most *m* monomials, where $L_{i,i}$ are linear polynomials. For any subset

 $B \subset D := \{(i, j) : 1 \le i \le k, 1 \le j \le m\}$ consider the polyhedron U_B consisting of points $x \in \mathbb{R}^n$ such that for each $1 \le i \le k$

$$\min_{1 \le j \le m} \{ L_{i,j}(x) \} = L_{i,j_0}(x), \ (i,j_0) \in B,$$

$$\min_{1 \le j \le m} \{L_{i,j}(x)\} < L_{i,j_1}(x), \, (i,j_1) \notin B.$$

Tropical prevariety $V(f_1, \ldots, f_k)$ is the union of all U_B such that for each $1 \le i \le k$ there exist $1 \le j_2 < j_3 \le m$ with $(i, j_2), (i, j_3) \in B$.

Moreover, U_B constitute a polyhedral complex: the faces of every U_B are also some U_{B_i} , and each intersection of the closures $\overline{U_{B_i}} \cap \overline{U_{B_s}}$ equals $\overline{U_{B_a}}$ for suitable q.

Assume that each tropical polynomial

 $f_i = \min\{L_{i,1}, \ldots, L_{i,m}\}, 1 \le i \le k$ is *m*-sparse, so has at most *m* monomials, where $L_{i,j}$ are linear polynomials. For any subset $B \subset D := \{(i,j) : 1 \le i \le k, 1 \le j \le m\}$ consider the polyhedron U_B consisting of points $x \in \mathbb{R}^n$ such that for each $1 \le i \le k$

$$\min_{1\leq j\leq m} \{L_{i,j}(x)\} = L_{i,j_0}(x), \ (i,j_0)\in B,$$

 $\min_{1 \le j \le m} \{L_{i,j}(x)\} < L_{i,j_1}(x), \ (i,j_1) \notin B.$

Tropical prevariety $V(f_1, \ldots, f_k)$ is the union of all U_B such that for each $1 \le i \le k$ there exist $1 \le j_2 < j_3 \le m$ with $(i, j_2), (i, j_3) \in B$.

Moreover, U_B constitute a polyhedral complex: the faces of every U_B are also some U_{B_i} , and each intersection of the closures $\overline{U_{B_i}} \cap \overline{U_{B_s}}$ equals $\overline{U_{B_a}}$ for suitable q.

Assume that each tropical polynomial

 $f_i = \min\{L_{i,1}, \ldots, L_{i,m}\}, 1 \le i \le k$ is *m*-sparse, so has at most *m* monomials, where $L_{i,j}$ are linear polynomials. For any subset $B \subset D := \{(i,j) : 1 \le i \le k, 1 \le j \le m\}$ consider the polyhedron U_B consisting of points $x \in \mathbb{R}^n$ such that for each $1 \le i \le k$

$$\min_{1\leq j\leq m} \{L_{i,j}(x)\} = L_{i,j_0}(x), \ (i,j_0)\in B,$$

$$\min_{1 \le j \le m} \{L_{i,j}(x)\} < L_{i,j_1}(x), (i,j_1) \notin B.$$

Tropical prevariety $V(f_1, \ldots, f_k)$ is the union of all U_B such that for each $1 \le i \le k$ there exist $1 \le j_2 < j_3 \le m$ with $(i, j_2), (i, j_3) \in B$.

Moreover, U_B constitute a polyhedral complex: the faces of every U_B are also some U_{B_l} , and each intersection of the closures $\overline{U_{B_l}} \cap \overline{U_{B_s}}$ equals $\overline{U_{B_q}}$ for suitable q.

Assume that each tropical polynomial

 $f_i = \min\{L_{i,1}, \ldots, L_{i,m}\}, 1 \le i \le k$ is *m*-sparse, so has at most *m* monomials, where $L_{i,j}$ are linear polynomials. For any subset $B \subset D := \{(i,j) : 1 \le i \le k, 1 \le j \le m\}$ consider the polyhedron U_B consisting of points $x \in \mathbb{R}^n$ such that for each $1 \le i \le k$

$$\min_{1 \le j \le m} \{ L_{i,j}(x) \} = L_{i,j_0}(x), \ (i,j_0) \in B,$$
$$\min_{1 \le j \le m} \{ L_{i,j}(x) \} < L_{i,j_1}(x), \ (i,j_1) \notin B.$$

Tropical prevariety $V(f_1, \ldots, f_k)$ is the union of all U_B such that for each $1 \le i \le k$ there exist $1 \le j_2 < j_3 \le m$ with $(i, j_2), (i, j_3) \in B$.

Moreover, U_B constitute a polyhedral complex: the faces of every U_B are also some U_{B_I} , and each intersection of the closures $\overline{U_{B_I}} \cap \overline{U_{B_s}}$ equals $\overline{U_{B_q}}$ for suitable q.

Consider arrangement A of at most $k \cdot {m \choose 2}$ hyperplanes of the form $L_{i,j_1} = L_{i,j_2}, 1 \le i \le k, 1 \le j_1 < j_2 \le m$. For any $B \subset D$ polyhedron U_B is a face of A. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V(f_1, \ldots, f_k)$ defined by m-sparse tropical polynomials f_1, \ldots, f_k does not exceed

$$n \cdot 2^n \cdot \binom{k \cdot \binom{m}{2}}{n}$$

owing to the bound on the number of faces of an arrangement due to **T. Zaslavski**.

< ロ > < 同 > < 回 > < 回 >

Consider arrangement *A* of at most $k \cdot \binom{m}{2}$ hyperplanes of the form $L_{i,j_1} = L_{i,j_2}$, $1 \le i \le k$, $1 \le j_1 < j_2 \le m$. For any $B \subset D$ polyhedron U_B is a face of *A*. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V(f_1, \ldots, f_k)$ defined by m-sparse tropical polynomials f_1, \ldots, f_k does not exceed

$$n \cdot 2^n \cdot \binom{k \cdot \binom{m}{2}}{n}$$

owing to the bound on the number of faces of an arrangement due to **T. Zaslavski**.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Consider arrangement *A* of at most $k \cdot \binom{m}{2}$ hyperplanes of the form $L_{i,j_1} = L_{i,j_2}$, $1 \le i \le k$, $1 \le j_1 < j_2 \le m$. For any $B \subset D$ polyhedron U_B is a face of *A*. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V(f_1, \ldots, f_k)$ defined by m-sparse tropical polynomials f_1, \ldots, f_k does not exceed

$$n \cdot 2^n \cdot \binom{k \cdot \binom{m}{2}}{n}$$

owing to the bound on the number of faces of an arrangement due to **T. Zaslavski**.

Consider arrangement *A* of at most $k \cdot \binom{m}{2}$ hyperplanes of the form $L_{i,j_1} = L_{i,j_2}$, $1 \le i \le k$, $1 \le j_1 < j_2 \le m$. For any $B \subset D$ polyhedron U_B is a face of *A*. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V(f_1, ..., f_k)$ defined by m-sparse tropical polynomials $f_1, ..., f_k$ does not exceed

$$n \cdot 2^n \cdot \binom{k \cdot \binom{m}{2}}{n}$$

owing to the bound on the number of faces of an arrangement due to **T. Zaslavski**.

・ロット (四) (日) (日) (日) (日)

Consider arrangement *A* of at most $k \cdot \binom{m}{2}$ hyperplanes of the form $L_{i,j_1} = L_{i,j_2}$, $1 \le i \le k$, $1 \le j_1 < j_2 \le m$. For any $B \subset D$ polyhedron U_B is a face of *A*. Therefore, by the Weak Morse Inequality we get

Theorem

The sum of Betti numbers of a tropical prevariety $V(f_1, ..., f_k)$ defined by m-sparse tropical polynomials $f_1, ..., f_k$ does not exceed

$$n \cdot 2^n \cdot \binom{k \cdot \binom{m}{2}}{n}$$

owing to the bound on the number of faces of an arrangement due to **T. Zaslavski**.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >